Saturday 26 May 2018

Biografi Pythagoras (580 - 475 M)

| Pencetus sekaligus penguasa nisbah dan segitiga Pythagoras |
Apabila bilangan mengatur alam semesta, Bilangan adalah kuasa yang diberikan kepada kita guna mendapatkan mahkota, untuk itu kita menguasai bilangan. If “Number rules the universe, Number is merely our delegate to the throne, for we rule Number.”
Pythagoras lahir di pulau Samos, Yunani selatan sekitar 580 SM (Sebelum Masehi). Dia sering melakukan perjalanan ke Babylon, Mesir dan diperkirakan pernah sampai di India. Di Babylon, teristimewa, Pythagoras menjalin hubungan dengan ahli-ahli matematika. Setelah lama menjelajah pulau kecil, Pythagoras meninggalkan tanah kelahirannya dan pindah ke Crotona, Italia. Diperkirakan Pythagoras sudah melihat 7 keajaiban dunia (kuno), dimana salah satunya adalah kuil Hera yang terletak di kota kelahirannya. Sekarang, kuil Hera sudah runtuh dan hanya tersisa 1 pilar yang tidak jauh dari kota Pythagorian (namanya dipakai untuk mengenang putra terbaiknya). Menyeberangi selat dan beberapa mil ke utara adalah Turki, terdapat keajaiban lain yaitu: Ephesus.
Pythagoras adalah anak Mnesarchus, seorang pedagang yang berasal dari Tyre. Pada usia 18 tahun dia bertemu dengan Thales. Thales, seorang kakek tua, mengenalkan matematika kepada Pythagoras lewat muridnya yang bernama Anaximander, namun yang diakui oleh Pythagoras sebagai guru adalah Pherekydes.
Pythagoras meninggalkan Samos pada tahun 518 SM. Tidak lama kemudian dia membuka sekolah di Croton yang menerima murid tanpa membedakan jenis kelamin. Sekolah itu menjadi sangat terkenal bahkan Pythagoras akhirnya menikah dengan salah satu muridnya. Gambaran rinci tentang Pythagoras tidak terlalu jelas. Dikatakan setelah itu, dia pergi ke Delos pada tahun 513 SM untuk merawat penolong sekaligus gurunya, Pherekydes. Pythagoras menetap di sana sampai dia meninggal pada tahun 475 SM. Sepeninggalnya, sekolah Croton berjalan terseok-seok dan banyak konflik internal, tetapi dapat terus berjalan sampai 500 SM sebelum menjadi alat politik.

Bagaimana Pythagoras menciptakan kultus terhadap angka?
Angka adalah “dewa” Matematika dan “mitos-mitos” palsu tentang angka tidak dapat dipisahkan. Setiap angka adalah simbol atau melambangkan sesuatu yang terkait dengan metafisik adalah hal lumrah di Cina. Pythagoras pun tidak luput dari “perangkap” mitos tentang angka. Dia mengajarkan bahwa: angka satu untuk alasan, angka dua untuk opini, angka tiga untuk potensi, angka empat untuk keadilan, angka lima untuk perkawinan, angka tujuh untuk rahasia agar selalu sehat, angka delapan adalah rahasia perkawinan. Angka genap adalah wanita dan angka ganjil/gasal adalah pria. “Berkatilah kami, angka dewa,” adalah kutipan dari para pengikut Pythagoras yang memberi perlakuan khusus terhadap angka empat,”yang menciptakan dewa-dewa dan manusia, O tetraktys suci yang mengandung akar dan sumber penciptaan yang berasal dari luar manusia.
Pemujaan angka seperti layaknya tukang sihir dengan bola kristalnya barangkali – di kemudian hari, mendasari para matematikawan setelah Pythagoras. Ucapan Plato “Tuhan memahami geometri” atau kutipan Galileo “Buku terbesar tentang alam ditulis dengan simbol-simbol matematika.” Apakah itu termasuk ilmu sihir atau matematika. Yang jelas matematika lebih sulit untuk dipahami.
Hubungan matematika dengan musik dekat sekali. Tidaklah mengherankan apabila Pythagoras juga mampu menjadi seorang musisi. Mitos bilangan Pythagoras terkandung lewat “keajabiban” pentagram. Bentuk segi-lima yang makin lama makin kecil sampai takterhingga.
Pythagoras sebagai pemusik Pythagoras juga dikenal sebagai musisi berbakat, seorang pemain lira. Penemuan musik terkait dengan matematika diawali ketika Pythagoras bermain monokord, sebuah kotak dengan bentangan tali-tali di atas salah satu sisinya. Dengan menggerakkan jari naik dan turun pada garis-garis yang sengaja dibuat, Pythagoras mengenali bahwa suara yang dihasilkan dapat diperkirakan. Ketika bagian tengah ditekan, setiap bagian atas tali dan bawah tali menghasilkan nada sama: nada yang tepat 1 oktaf * lebih tinggi dibandingkan apabila monokord tidak ditekan. Dengan membagi monokord dengan nisbah 3/4 dan 2/5, ternyata setiap nisbah menghasilkan nada yang berbeda, merdu atau fals. Baginya, harmoni musik adalah aktivitas matematika. Harmoni dari monokord adalah harmoni matematika-dan harmoni alam semesta. Pythagoras menyimpulkan bahwa nisbah tidak hanya berlaku pada musik tetapi juga pada pelbagai jenis keindahan lain. Para pengikut Pythagoras menyimpulkan bahwa nisbah dan proporsi mengendalikan keindahan musik, kecantikan fisik dan keanggunan matematika.
Contoh: sebuah tali panjang yang menghasilkan nada C, kemudian 16/15 dari panjang tali C menghasilkan notasi B; 6/5 panjang tali C menghasilkan notasi A, 4/3 panjang tali C menghasilkan notasi G; 3/2 panjang tali C menghasilkan notasi F; 8/5 panjang tali C menghasilkan notasi E; 16/9 panjang tali C menghasilkan notasi D dan 2/1 panjang tali C menghasilkan notasi C rendah.
Penelitian tentang suara mencapai puncaknya pada abad 19 setelah John Fourier mampu membuktikan bahwa semua suara – instrumental maupun vokal – dapat dijabarkan dengan matematika, yaitu jumlah fungsi-fungsi Sinus sederhana. Menurutnya, suara mempunyai 3 kategori – pitch, loudness dan quality. Penemuan Fourier ini memungkinkan ketiga kategori tersebut digambar dan dibedakan. Pitch terkait dengan frekuensi kurva, loudness terkait dengan amplitudu dan quality terkait dengan bentuk dari fungsi periodik. Lewat motto “Angka adalah dewa”, Pythagoras mampu menggalang sejumlah pengikut.
Para pengikut Pythagoras (Pythagorean) Pythagoras barangkali dapat disebut sebagai pemikir new ages pada jamannya. Dia juga seorang orator ulung, intelektual terkenal sekaligus guru yang kharismatik. Semua itu membuat banyak orang ingin belajar darinya. Tidaklah mengherankan apabila tidak lama kemudian dia mempunyai banyak pengikut dan disusul dengan mendirikan sekolah.
Falsafah dasar yang paling penting bagi Pythagoras adalah: angka. Yunani mewarisi pemahaman tentang angka dari geometrik Mesir. Hasilnya, ahli matematika Yunani tidak dapat membedakan antara bentuk (shapes) dengan bilangan (numbers). Pada saat ini untuk membuktikan theorema matematika biasa digunakan gambar-gambar yang digambar dengan menggunakan sejenis penggaris yang terbuat dari logam atau batu dan kompas.
Nisbah-nisbah adalah kunci untuk memahami alam, Pythagorean dan matematikawan lebih modern menghabiskan banyak energi dengan menggali lebih dalam teori-teori mereka. Akhirnya mereka memilah proporsi ke dalam sepuluh kategori berbeda yang disebut dengan titik tengah harmonis (harmonic means). Salah satu dari titik tengah ini mengandung angka paling “cantik” di dunia: nisbah emas (golden ratio). Tidak ada yang istimewa dari nisbah emas ini, tetapi sesuatu yang terinspirasi oleh nisbah emas tampaknya merupakan obyek-obyek yang sangat indah. Bahkan sampai saat ini, artis dan arsitek secara intuitif mengetahui bahwa obyek-obyek yang mengandung nisbah emas nampak artistik. Dan nisbah ini mempengaruhi banyak pekerjaan pada bidang seni dan arsitektur. Parthenon, kuil Athena terbesar, dibangun dengan kaidah nisbah emas ada pada setiap aspek kontruksinya. Dalam pikiran Pythagorean, nisbah mengendalikan alam semesta dan berarti sahih bagi seluruh dunia Barat pula.

Cacat pada doktrin Pythagorean
Angka nol tidak mendapat tempat dalam kerangka kerja Pythagorean. Angka nol tidak ada atau tidak dikenal dalam kamus Yunani. Menggunakan angka nol dalam suatu nisbah tampaknya melanggar hukum alam. Suatu nisbah menjadi tidak ada artinya karena “campur tangan” angka nol. Angka nol dibagi suatu angka atau bilangan dapat menghancurkan logika. Nol membuat “lubang” pada kaidah alam semesta versi Pythagorean, untuk alasan inilah kehadiran angka nol tidak dapat ditolerir. Pythagorean juga tidak dapat memecahkan “problem” dari konsep matematika – bilangan irrasional, yang sebenarnya juga merupakan produk sampingan (by product) rumus: a² + b² = c². Konsep ini juga menyerang sudut pandang mereka, namun dengan semangat persaudaraan tetap dijaga sebagai sebuah rahasia. Rahasia ini harus tetap dijaga jangan sampai bocor atau kultus mereka hancur. Mereka tidak mengetahui bahwa bilangan irrasional adalah “bom waktu” bagi kerangka berpikir matematikawan Yunani.
Nisbah antara dua angka tidak lebih dari membandingkan dua garis dengan panjang berbeda. Anggapan dasar Pythagorean adalah segala sesuatu yang masuk akal dalam alam semesta berkaitan dengan kerapian (neatness), proporsi tanpa cacat atau rasional. Nisbah ditulis dalam bentuk a/b bilangan utuh, seperti: 1, 2 atau 17, dimana b tidak boleh sama dengan nol karena dengan itu akan menimbulkan bencana. Tidak perlu dijelaskan lagi, alam semesta tidak sesuai dengan kaidah tersebut. Banyak angka tidak dapat dinyatakan semudah itu ke dalam nisbah a/b. Kehadiran angka irrasional tidak dapat dihindari lagi adalah konsekuensi matematikawan Yunani.
Persegi panjang adalah bentuk paling sederhana dalam geometri, tetapi dibaliknya terkandung bilangan irrasional. Apabila anda membuat garis diagonal pada persegi panjang – muncul irrasional, dan kelak besarnya ditentukan oleh akar bilangan. Bilangan irrasional terjadi dan akan selalu terjadi pada semua bentuk geometri. Contoh lain, segi tiga siku-siku dengan panjang kedua sisi adalah satu, dapat dihitung panjang sisi lain – dengan rumus Pythagoras, yaitu: v2. Sangatlah sulit menyembunyikan hal ini bagi orang yang paham geometri dan nisbah.

Hippasus menyangkal
Rahasia ini akhirnya dibocorkan oleh seorang pengikut Pythagorean yang merasa bahwa dia harus mengungkapkan kebenaran. Hippasus adalah matematikawan yang menjadi murid sekaligus pengikut Pythagoras. Hippasus berasal dari Metapontan. Pengungkapan rahasia membuat dia dijatuhi hukuman mati. Cerita tentang bagaimana meninggalnya Hipassus ada berbagai versi. Beberapa mengatakan bahwa Hippasus ditenggelamkan di laut, sebagai konsekuensi menghancurkan teori indah dengan fakta-fakta menyesatkan. Sumber lain menyebutkan bahwa para pengikut Pythagoras mengubur dia hidup-hidup. Lainnya menyebutkan bahwa Hippasus, dibuang atau diasingkan dalam ruangan tertutup tanpa pernah bertemu orang lagi.
Tanpa usaha mengklarifikasikan mana yang benar, namun yang jelas pengungkapan oleh Hippasus ini mengoncangkan fondasi-fondasi doktrin Pythagoras. Dalam hal ini Pythagorean menanggap bahwa bilangan irrasional hanya sebagai suatu perkecualian. Mereka tidak dapat membuktikan bahwa bilangan irrasional mencemari pandangan mereka tentang alam semesta.

Meninggalnya Pythagoras
Para pengikut Pythagoras menyatakan bahwa guru mereka meninggal dengan cara yang unik. Beberapa dari mereka menyatakan Pythagoras mogok makan, sebagian lagi menyatakan bahwa dia mengurung dan berdiam diri. Cerita lain menyatakan bahwa konon rumahnya dibakar oleh para musuhnya (mereka yang merasa tersingkirkan oleh kehadiran Pythagoras di tempat itu). Semua pengikutnya ke luar dari rumah terbakar dan lagi ke segala penjuru untuk menyelamatkan diri. Massa yang membakar rumah itu kemudian membantai para pengikutnya (pythagorean) satu per satu. Persaudaraan sudah dihancurkan. Pythagoras sendiri berusaha melarikan diri tetapi tertangkap dan dipukuli. Dia disuruh berlari di suatu ladang, namun mengatakan bahwa dia lebih baik mati. Kemudian diambil keputusan bersama dan diputuskan: Pythagoras dihukum pancung di muka umum.
Meskipun persaudaraan sudah bubar dan pemimpinnya terbunuh, esensi ajaran Pythagoras terus bertahan sampai sekarang. Falsafah Barat banyak dipengaruhi oleh pemikiran Pythagoras – seperti halnya doktrin Aristoteles, ternyata mampu bertahan hampir 2 milenium. Angka nol dan bilangan irrasional bertentangan dengan doktrin tersebut, tetapi memberi landasan bagi para matematikawan berikutnya agar memperhatikan angka nol dan bilangan irrasional.
*) Oktaf artinya 8 yaitu: nada dari 1(do) sampai 1 (do tinggi) atau dari C sampai C lagi
Sumbangsih
Penemuan Pythagoras dalam bidang musik dan matematika tetap hidup sampai saat ini. Theorema Pythagoras tetap diajarkan di sekolah-sekolah dan digunakan untuk menghitung jarak suatu sisi segitiga. Sebelum Pythagoras belum ada pembuktian atas asumsi-asumsi. Pythagoras adalah orang pertama yang mencetuskan bahwa aksioma-aksioma, postulat-postulat perlu dijabarkan terlebih dahulu dalam mengembangkan geometri.
Manfaat ini, kelak, membuat matematika tetap dapat digunakan sebagai alat bantu dalam melakukan perhitungan terhadap pengamatan terhadap fenomena-fenomena alam, setelah melalui pengembangan dan penyempurnaan oleh para matematikawan setelah Pythagoras. Theorema Pythagoras mendasari adanya theorema Fermat (tahun 1620): x2 + y2 = z2 yang baru dapat dibuktikan oleh Sir Andrew Wiles pada tahun 1994.

Lihat Video Tutorial Excel "Menggunakan Fungsi Count If untuk mencari Jumlah Data Tertentu pada Ms  Excel"

Friday 18 May 2018

Biografi Muhammad bin Musa Al-Khawarizmi (780 – 848 M)

Angka nol ? Siapa sih yang ga tau angka itu? Wah, bakal repot banget pastinya ya kalau di dunia ini ga ada yang namanya angka nol! Ga percaya? Ya bayangin aja gitu, kalau kita mau menulis angka 100 ga ada angka nol. Bisa? Ya jelas bisa, kan ada angka romawi.. :-D , yap, ada C, ada L, ada X, dan sebagainya itu. Tapi gimana kalau mau nulis satu milyar? Satu juta? Angka netral? Nah loh, bingung deh tuh pastinya. Saya sendiri sebagai seorang praktisi matematika (ciee…), ngebayangin juga tuh kadang kalau angka nol ga ada, dunia perhitungan kita mau jadi apa.

Nah, tapi sebenarnya temen-temen tau ga sih emang siapa penemu dari angka nol? Aristoteles? Rene Descartes? Phytagoras? Atau… Siapa? Ya! Salah semua, yang bener itu ternyata adalah seorang ilmuwan muslim. Namanya Muhammad bin Musa Al-Khawarizmi.
Nah, kali ini kita akan sama-sama melihat bagaimana biografi dari penemu angka nol ini.

Bapak Aljabar ( 780 – 848 M )

Muhammad bin Musa Al-Khawarizmi adalah penemu ilmu Al Jabar dan tokoh ilmu pasti, paling besar di dunia Islam. Para ilmuwan Eropa mengenalnya dengan Al frismus. Dari namanya ini diambil istilah Al Gorism atau Algoritma.

Muhammad bin Musa al-Khawarizmi lahir pada tahun 780 M di bagian Barat kota Bagdad. Ayahnya, Musa bin Syakir adalah seorang pegawai Khalifat al-Ma’mun. Saat usianya menginjak remaja, al-Khawarizmi didaftarkan oleh ayahnya menjadi pegawai Khalifat al-Ma’mun.

Al-Ma’mun adalah salah seorang Khalifah Abbasiyah yang sangat memperhatikan perkembangan ilmu pengetahuan. Ia mendirikan Baitul Hikmah (pusat ilmu pengetahuan) di kota Bagdad. Di tempat ini, ia mengumpulkan para ilmuwan fisika, matematika, astrologi, sejarawan, penyair, ahli hukum, ahli hadis dan para musafir (ahli tafsir). Al-Ma’mun meminta mereka untuk mengembangkan ilmu pengetahuan yang mereka miliki dan menuliskannya. Ia juga meminta para ilmuwan itu untuk menerjemahkan buku-buku ilmu pengetahuan berbahasa Yunani, Yahudi dan Cina ke dalam bahasa Arab. Selama tinggal di Baitul Hikmah, para ilmuwan itu mendapat tunjangan dan jaminan dari Khalifah al-Ma’mun.

Penerjemah.
Khalifah Al-Ma’mun sangat tertarik oleh salah seorang pegawainya yang kelihatan cerdas dan cekatan. Orang itu tidak lain adalah Al-Khawarizmi.

“Hai anak muda, kemarilah!” kata Al-Ma’mun.”Ada apa tuan?” jawab Al-Khawarizmi. “Maukah engkau belajar bahasa Sansekerta?” tanya Al-Ma’mun.”Tentu saja, Tuan,” jawab Al-Khawarizmi gembira.

Pada masa itu, bahasa Sansekerta merupakan bahasa yang banyak diminati orang untuk dipelajari. Penyebabnya bahasa Sansekerta merupakan bahasa pengantar dari buku-buku ilmu pengetahuan India.
Atas biaya dari Al-Ma’mun, Al-Khawarizmi kemudian belajar bahasa Sanskerta hingga mahir. Setelah tiu, ia diberi tugas untuk menerjemahkan sebuah buku berbahasa Sansekerta yang berjudul Siddhanta. Buku yang membahas ilmu astronomi ini, diterjemahkan Al-Khawarizmi ke dalam bahasa Arab dengan sangat baik. Pada tahun 830 M, Al-Khawarizmi mendapat tugas lagi untuk menerjemahkan buku geografi karya Ptolomeus, seorang ilmuwan Yunani.

Penulis
Setelah sukses menjadi penerjemah Al-Khawarizmi mulai menulis buku. Buku pertama yang ditulisnya berjudul Suratul Ardhi (peta dunia). Dalam bukunya ini, Al-Khawarizmi membagi bumi menjadi tujuh daerah yang disesuaikan dengan perubahan iklim. Peta dunia karya Al-khawarizmi ini dijadikan model oleh ahli-ahli geografi Barat untuk menggambar peta dunia.

Bersama para ilmuwan lainnya, Al-Khawarizmi kemudian membuat tabel perhitungan astronomi yang dapat digunakan untuk mengukur jarak dan kedalaman bumi. Karyanya ini diterima oleh para ilmuwan di Yunani, India dan Cina. Pada tahun 1226, tabel ini mulai diterjemahkan ke dalam bahasa Latin dan menjadi dasar penelitian astronomi.
Al-Khawarizmipun mulai dikenal sebagai orang jenius yang mahir dalam berbagai bidang ilmu pengetahuan , terutama dalam bidang matematika. Tulisan-tulisan karya ilmuwan Yunani dikoreksi kesalahannya oleh Al-Khawarizmi, kemudian dikembangkannya sedemikian rupa sehingga menjadi mudah dipahami.

Al-Khawarizmi menulis buku matematika yang berjudul Hisab Aljabar wal Muqabala. Buku ini berisi tentang persamaan linear dan kuadrat. Dalam bukunya ini ia menjelaskan cara menyederhanakan suatu persamaan kuadrat.

Misalnya persamaan:
x + 5x + 4 = 4 – 2x + 5x³, dengan  aljabar, persamaan ini menjadi : x + 7x + 4 = 4 + 5x³ dengan al-muqabala, persamaan ini menjadi lebih sederhana: x + 7x = 5x³

Buku Hisab Aljabar wal Muqabala ini kemudian diterjemahkan pada abad ke 12 ke dalam bahasa Latin. Sampai abad ke 16 buku ini digunakan sebagai buku pegangan para mahasiswa yang belajar matematika di universitas-universitas di Eropa.

Riwayat Angka Nol
Al-Khawarizmi adalah orang pertama yang menjelaskan kegunaan angka-angka, termasuk angka nol. Ia menulis buku yang membahas beberapa soal hitungan dan asal-usul angka, serta sejarah angka-angka yang sedang kita gunakan. Melalui Al-Khawarizmilah orang-orang Eropa belajar menggunakan angka nol untuk memudahkan menghitung puluhan, ratusan, ribuan, dst, dst..
Dengan penggunaan angka tersebut maka kata Arab Shifr yang artinya nol (kosong) diserap ke dalam bahasa Perancis menjadi kata chiffre, dalam bahasa Jerman menjadi ziffer, dan dalam bahasa Inggris menjadi cipher. Bilangan nol ditulis bulat dan didalamnya kosong.

Al-Khawarizmi-pun memperkenalkan tanda-tanda negatif yang sebelumnya tidak dikenal di kalangan ilmuwan Arab. Para matematikawan di seluruh dunia mengakuinya dan berhutang budi kepada Al-Khawarizmi. Ia juga mengarang buku sundials (alat-alat petunjuk waktu dengan bantuan bayangan sinar matahari).
Al-Khawarizmi berhasil menyusun tabel astronomi yang sangat lengkap untuk menggantikan tabel astronomi buatan Yunani dan India. Tabel ini menjadi pegangan para ilmuwan astronomi, baik di Timur maupun di Barat.

Disalin Para Ilmuwan Barat
Para ilmuwan Barat seperti Copernicus, banyak menyalin teori-teori dari para ilmuwan muslim, diantaranya dari Al-Khawarizmi. Misalnya, tentang perhitungan ketinggian gunung, kedalaman lembah dan jarak antara dua buah objek yang terletak antara suatu daerah yang berpermukaan datar atau yang berpermukaan tidak rata.

Bahkan, ada ilmuwan Barat lainnya yang tidak saja menyalin teori hasil pemikiran al-Khawarizmi, tetapi juga mengakuinya sebagai penemunya. Misalnya, John Napies (1550-1617 M) dan Simon Stevin (1548-1620 M) . Mereka mengaku bahwa merekalah penemu rumus ilmu ukur mengenai segitiga, daftar logaritma dan hitungan persepuluh. Padahal, para ilmuwan Muslim mengetahui bahwa Al-Khawarizmi-lah yang pertama kali menemukannya.

Wafat
Pada tahun 847 M, Al-Khawarizmi wafat dalam usia 67 tahun. Ia meninggalkan kenangan abadi bagi para ilmuwan matematika di seluruh dunia. Ia digelari Bapak Matematika karena keberhasilannya dalam memajukan cabang ilmu ini hingga mencapai puncaknya.

Wednesday 16 May 2018

Luas Permukaan dan Volume Kubus

Kubus
Pernahkah kamu melihat dadu? Dadu merupakan salah satu alat permainan yang berbentuk kubus. Apa yang dimaksud dengan kubus?
1.     Definisi Kubus
Kubus adalah sebuah bangun ruang yang semua sisinya berbentuk persegi dan semua rusuknya sama panjang. Gambar di samping menunjukkan sebuah kubus ABCD.EFGH yang memiliki unsur-unsur sebagai berikut.
2.     Unsur-Unsur Kubus


a.     Sisi/Bidang
Sisi kubus adalah bidang yang membatasi kubus. Kubus memiliki 6 buah sisi yang semuanya berbentuk persegi, yaitu ABCD (sisi bawah), EFGH (sisi atas), ABFE (sisi depan), CDHG (sisi belakang), BCGF (sisi samping kiri), dan ADHE (sisi samping kanan).
b.     Rusuk
Rusuk kubus adalah garis potong antara dua sisi bidang kubus dan terlihat seperti kerangka yang menyusun kubus. Coba perhatikan kembali Gambar Kubus ABCD.EFGH. Kubus memiliki 12 buah rusuk, yaitu AB, BC, CD, DA, EF, FG, GH, HE, AE, BF, CG, dan DH. Rusuk-rusuk yang sejajar pada kubus :  AB//DC//EF//HG ; AD// BC// FG//EH ; dan  AE// BF//CG// DH
c.     Titik Sudut

Titik sudut kubus adalah titik potong antara dua rusuk. Dari Gambar 8.2 , terlihat kubus ABCD. EFGH memiliki 8 buah titik sudut, yaitu titik A, B, C, D, E, F, G, dan H.

Selain ketiga unsur di atas, kubus juga memiliki diagonal. Diagonal pada kubus ada tiga, yaitu diagonal bidang, diagonal ruang, dan bidang diagonal.
a.     Diagonal Bidang


Coba kamu perhatikan kubus ABCD.EFGH. Pada kubus tersebut terdapat garis EG dan FH yang menghubungkan dua titik sudut yang saling berhadapan dalam satu sisi/bidang. Ruas garis tersebut dinamakan sebagai diagonal bidang. Kubus mempunyai 12 diagonal bidang, diantaranya adalah : AC, BD, FH, GE, BE, AF, DG, CH, BG, CF, AH, DE
b.     Diagonal Ruang

Kubus ABCD.EFGH disamping terdapat ruas garis HB dan EC yang menghubungkan dua titik sudut yang saling berhadapan dalam satu ruang. Ruas garis tersebut disebut diagonal ruang. Kubus mempunyai 4 diagonal ruang, diantaranya AG, HB,CE, dan DF.
c.     Bidang Diagonal

Perhatikan kubus ABCD.EFGH secara saksama. Pada gambar tersebut, terlihat dua buah diagonal bidang pada kubus ABCD. EFGH yaitu BD dan HF. Ternyata, diagonal bidang BD dan HF beserta dua rusuk kubus yang sejajar, yaitu BF dan DH membentuk suatu bidang di dalam ruang kubus bidang BDHF pada kubus tersebut.
Bidang diagonal adalah bidang yang dibatasi oleh dua rusuk dan dua diagonal bidang pada kubus. Kubus memiliki 6 bidang diagonal. Bidang diagonal kubus ABCDEFGH adalah : BDHF, ACGF, ABGH, CDEF, ADGF, BCHE
3.     Cara Melukis Kubus
Langkah-langkah melukis kubus :
a.     Lukislah dua buah persegi, sebagai bagian sisi depan dan sisi belakang kubus. Rusuk yang tidak terlihat dari depan lukislah dengan garis putus-putus. 

b.     Hubungkan rusuk-rusuk dari depan ke belakang. Terbentuklah sebuah kubus.

4.     Sifat-Sifat Kubus

Untuk memahami sifat-sifat kubus, coba kamu perhatikan Gambar di samping. Gambar tersebut menunjukkan kubus ABCD.EFGH yang memiliki sifat-sifat sebagai berikut.
1.     Semua sisi kubus berbentuk persegi.
2.     Semua rusuk kubus berukuran sama panjang.
3.     Setiap diagonal bidang pada kubus memiliki ukuran yang sama panjang.
4.     Setiap diagonal ruang pada kubus memiliki ukuran sama panjang.
5.     Setiap bidang diagonal pada kubus memiliki bentuk persegipanjang.

5.     Kerangka Kubus
Sebuah kubus memiliki 12 rusuk. Jika panjang rusuk kubus adalah s maka jumlah panjang rusuknya adalah 12r.
6.     Jaring-Jaring Kubus
Jaring-jaring kubus ada 11 yaitu :


7.     Luas Permukaan Kubus
Misalkan, kamu ingin membuat kotak makanan berbentuk kubus dari sehelai karton. Jika kotak makanan yang diinginkan memiliki panjang rusuk 8 cm, berapa luas karton yang dibutuhkan untuk membuat kotak makanan tersebut? Masalah ini dapat diselesaikan dengan cara menghitung luas permukaan suatu kubus.
Luas permukaan kubus adalah jumlah luas sisi-sisi kubus. Kalian ingat bahwa kubus mempunyai 6 sisi dengan panjang rusuk (r). Sedangkan sisi kubus merupakan bangun datar yaitu persegi. Jadi, untuk mencari luas permukaan kubus adalah 6 kali luas persegi. Atau dengan rumus :
L permukaan kubus = 6 × r2

8.     Volume Kubus
Misalkan, sebuah bak mandi yang berbentuk kubus memiliki panjang rusuk 1,2 m. Jika bak tersebut diisi penuh dengan air, berapakah volume air yang dapat ditampung? Untuk mencari solusi permasalahan ini, kamu hanya perlu menghitung volume bak mandi tersebut. Bagaimana mencari volume kubus? Masalah ini dapat diselesaikan dengan cara menghitung Volume suatu kubus. Perhatikan gambar dibawah ini.

Kubus di atas mempunyai 8 kubus kecil. Kubus-kubus kecil tersebut merupakan isi/volume kubus besar. Dengan kata lain, volume kubus di samping adalah 2 satuan x 2 satuan x 2 satuan = 8 satuan.
V kubus = rusuk x rusuk x rusuk = r x r x r = r3

9.     Contoh Soal
a.     Sebuah bak air berbentuk kubus dengan alas berukuran 50 cm × 50 cm. Berapakah volume air yang harus diisikan pada bak tersebut agar dapat terisi sampai penuh?
Penyelesaian:
Diketahui:
r = 50 cm
Ditanyakan:
V kubus = . . . .
Solusi:
V kubus = r x r x r
         = 50 cm x 50 cm x 50 cm
         = 125.000 cm3
Jadi, banyaknya air yang harus diisikan pada bak tersebut adalah 125.000 cm3 atau 125 liter.

b.     Suatu kubus memiliki panjang rusuk 15 cm. Tentukan luas permukaan kubus tersebut?
Penyelesaian:
Diketahui:
r = 15 cm
Ditanyakan:
L permukaan kubus = . . . .
Solusi:
L permukaan kubus = 6 × r2
                     = 6 × 152
                     = 6 × 15 cm × 15 cm
                     = 6 × 225 cm2
                     = 1350 cm2
Jadi, luas permukaan kubus tersebut adalah 1350 cm2.

Monday 14 May 2018

Tokoh-Tokoh Matematika

1.Thales (Yunani, 624-546 SM)

Thales (624-550 SM)Dapat disebut matematikawan pertama yang merumuskan teorema atau proposisi, dimana tradisi ini menjadi lebih jelas setelah dijabarkan oleh Euclid. Landasan matematika sebagai ilmu terapan rupanya sudah diletakan oleh Thales sebelum muncul Pythagoras yang membuat bilangan.

2. Phytagoras (Yunani, 582-493 SM)

Meskipun Phytagoras adalah master filsafat tapi dia juga mempelajari musik dan ilmu-ilmu lainnya. Ia lahir di Yunani dan kemudian ke Mesir dan Babilonia untuk belajar. Phytagoras terkenal dengan bukti-bukti yang menjelaskan bahwa dalam segitiga siku-siku, kuadrat dari sisi miring sama dengan jumlah kuadrat dari kedua sisi yang lainnya. Sebuah segitiga siku-siku yang sisi-sisinya ke 3: 4: 5 adalah dasar dari proposisi matematika untuk perhitungan sudut dalam segitiga a2 + b2 = c2

3. Euclides (Yunani, 325-265 SM)

Ecluides (325-265 SM)Euklides disebut sebagai “Bapak Geometri” karena menemuka teori bilangan dan geometri. Subyek-subyek yang dibahas adalah bentuk-bentuk, teorema Pythagoras, persamaan dalam aljabar, lingkaran, tangen,geometri ruang, teori proporsi dan lain-lain. Alat-alat temuan Eukluides antara lain mistar dan jangka.

4. Archimedes (Yunani, 287-212 SM)

Kalian yang pernah belajar fisika pasti mengenal orang ini. Dia mengaplikasikan prinsip fisika dan matematika. Dan juga menemukan perhitungan π (pi) dalam menghitung luas lingkaran. Ia adalah ahli matematika terbesar sepanjang zaman dan di zaman kuno. Tiga karya Archimedes membahas geometri bidang datar, yaitu pengukuran lingkaran, kuadratur dari parabola dan spiral.

5. Appolonius (Turki, 262-190 SM)

Appolonius mungkin masih asing ditelinga kalian. Tapi konsepnya mengenai parabola, hiperbola, dan elips banyak memberi sumbangan bagi astronomi modern. Ia merupakan seorang matematikawan yang ahli dalam geometri. Teorema Appolonius menghubungkan beberapa unsur dalam segitiga.

6. Diophantus (Mesir, 250-200 SM)

Ia merupakan “Bapak Aljabar” bagi Babilonia yang mengembangkan konsep-konsep aljabar Babilonia. Karya besar Diophantus berupa buku aritmatika, buku karangan pertama tentang sistem aljabar. Bagian yang terpelihara dari aritmatika Diophantus berisi pemecahan kira-kira 130 soal yang menghasilkan persamaan-persamaan tingkat pertama.

7. Muhammad bin Musa Al-Khawarizmi (Irak, 780 – 848 M)

Muhammad bin Musa Al-Khawarizmi adalah penemu ilmu Al Jabar dan tokoh ilmu pasti, paling besar di dunia Islam. Para ilmuwan Eropa mengenalnya dengan Al frismus. Dari namanya ini diambil istilah Al Gorism atau Algoritma. Al-Khawarizmi adalah orang pertama yang menjelaskan kegunaan angka-angka, termasuk angka nol. Ia menulis buku yang membahas beberapa soal hitungan dan asal-usul angka, serta sejarah angka-angka yang sedang kita gunakan. Melalui Al-Khawarizmilah orang-orang Eropa belajar menggunakan angka nol untuk memudahkan menghitung puluhan, ratusan, ribuan, dst, dst..
Dengan penggunaan angka tersebut maka kata Arab Shifr yang artinya nol (kosong) diserap ke dalam bahasa Perancis menjadi kata chiffre, dalam bahasa Jerman menjadi ziffer, dan dalam bahasa Inggris menjadi cipher. Bilangan nol ditulis bulat dan didalamnya kosong.
Al-Khawarizmi-pun memperkenalkan tanda-tanda negatif yang sebelumnya tidak dikenal di kalangan ilmuwan Arab. Para matematikawan di seluruh dunia mengakuinya dan berhutang budi kepada Al-Khawarizmi. Ia juga mengarang buku sundials (alat-alat petunjuk waktu dengan bantuan bayangan sinar matahari).
Al-Khawarizmi berhasil menyusun tabel astronomi yang sangat lengkap untuk menggantikan tabel astronomi buatan Yunani dan India. Tabel ini menjadi pegangan para ilmuwan astronomi, baik di Timur maupun di Barat.

8. Ibnu Sina (Iran, 980 – 1037 M)

Ibnu Sina dikenal juga sebagai Avicenna di Dunia Barat adalah seorang filsuf, ilmuwan, dan juga dokter kelahiran Persia (sekarang sudah menjadi bagian Uzbekistan). Ia juga seorang penulis yang produktif dimana sebagian besar karyanya adalah tentang filosofi dan pengobatan. Bagi banyak orang, beliau adalah “Bapak Pengobatan Modern” dan masih banyak lagi sebutan baginya yang kebanyakan bersangkutan dengan karya-karyanya di bidang kedokteran. Karyanya yang sangat terkenal adalah Qanun fi Thib yang merupakan rujukan di bidang kedokteran selama berabad-abad. Dia adalah pengarang dari 450 buku pada beberapa pokok bahasan besar. Banyak di antaranya memusatkan pada filosofi dan kedokteran. Dia dianggap oleh banyak orang sebagai “bapak kedokteran modern.” George Sarton menyebut Ibnu Sina “ilmuwan paling terkenal dari Islam dan salah satu yang paling terkenal pada semua bidang, tempat, dan waktu.

9. Leonardo Pisano Bigollo (Italia, 1170-1240 M)

Signifikansi perkembangan matematika pada abad pertengahan di Eropa seiring dengan lahirnya Leonardo dari Pisa yang lebih dikenal dengan julukan Fibonacci (artinya anak Bonaccio). Bonaccio sendiri artinya anak bodoh, tapi dia bukan orang bodoh karena jabatannya adalah seorang konsul yang wewakili Pisa. Jabatan yang dipegang ini membuat dia sering bepergian.
Bersama anaknya, Leonardo, yang selalu mengikuti ke negara mana pun dia melakukan lawatan. Fibonacci menulis buku Liber Abaci setelah terinspirasi pada kunjungannya ke Bugia, suatu kota yang sedang tumbuh di Aljazair. Ketika ayahnya bertugas di sana, seorang ahli matematika Arab memperlihatkan keajaiban sistem bilangan Hindu-Arab. Sistem yang mulai dikenal setelah jaman Perang Salib. Kalkulasi yang tidak mungkin dilakukan dengan menggunakan notasi (bilangan) Romawi. Setelah Fibonacci mengamati semua kalkulasi yang dimungkinkan oleh sistem ini, dia memutuskan untuk belajar pada matematikawan Arab yang tinggal di sekitar Mediterania. Semangat belajarnya yang sangat mengebu-gebu membuat dia melakukan perjalanan ke Mesir, Syria, Yunani, Sisilia.

10. Leonardo Da Vinci (Italia, 1452-1519 M)

Sejak kecil Leonardo Da Vinci telah menunjukkan kemampuan khusus dalam bidang matematika, lukisan musik, dan daerah lainnya. Secara khusus ia mencintai lukisan dan studi seni. Sebagai seorang pelukis dan pematung, ia menghasilkan sebuah karya, salah satunya yang terkenal karena lukisan Monalisa. Sebagai arsitek terkemuka ia juga meninggalkan banyak karya-karya besar dan monumental. Leonardo Da Vinci juga mempelajari geometri dan menggunakan metode membuat subjek lukisan jatuh di atas segitiga imajiner. Metode ini disebut komposisi piramida. Untuk melukis gambar ruang pada kanvas datar ia menggunakan semua metode garis horizontal paralel terlihat menuju titik tertentu. Metode ini dikenal dengan nama perspektif.

11. Copernicus (Polandia, 1.473-1.543 M)

Copernicus mempelajari astronomi, matematika, fisika, ilmu pengetahuan, hukum dan kedokteran. Harinya umumnya percaya bahwa Matahari, Bulan dan bintang bergerak mengelilingi bumi karena bumi dianggap sebagai pusat tata surya. Tapi Copernicus yakin bahwa pusat alam semesta bukanlah bumi, namun Matahari di mana semua benda-benda langit berputar mengelilingi matahari. Ini bertentangan dengan filsafat pikiran Copernicus dan agama tradisional. Yang terkenal mengungkapkan teorinya dalam bukunya berjudul “rotasi benda-benda langit“. Ia mendapat ancaman hukuman mati atas teorinya tersebut oleh Gereja, karena dianggap menentang dogma-dogma akademik yang dikeluarkan Gereja.

12. Galileo Galilei (Italia, 1564-1642 M)

Galileo belajar matematika, fisika dan astronomi. Setelah orang percaya bahwa kecepatan benda jatuh tergantung pada berat benda dijatuhkan. Dalam teori itu disebutkan bahwa jatuhnya benda yang lebih berat akan lebih cepat daripada benda ringan. Galileo membantah teori atas dasar keyakinan bahwa kecepatan jatuhnya sebuah benda tidak tergantung pada berat badan. Dia membuktikannya dengan menjatuhkan dua potong logam yang satu lebih berat dari yang lain dari atas Menara Miring Pisa. Bahkan pada titik ini semua orang setuju teorinya benar, tapi hari dengan bukti secara langsung menerima teori bahwa orang dengan takjub besar. Setiap saat ketika ia menonton berayun pada chandelier Gereja, ia mencatat bahwa terlepas dari berapa banyak benda itu berayun ke samping, waktu yang dibutuhkan untuk setiap gerakan 1 bolak-balik (getaran) adalah sama. Pada akhir hidupnya Galileo Galilei dijatuhi hukuman mati oleh Gereja untuk mendukung gagasan Copernicus bahwa bumi berputar mengelilingi matahari.

13. Rene Descartes (France 1.596-1.650 M)
Descartes mempelajari Matematika, fisika, politik dan filsafat. Dia adalah orang yang pertama kali menggunakan sistem dua atau tiga nomor seperti (A, B) atau (A, B, C) sebagai koordinat untuk menggambarkan poin di pesawat atau di ruang angkasa. Dengan cara ini pernyataan tentang gambar dalam geometri dari titik digariskan oleh Euclides dapat diterjemahkan ke dalam pernyataan mengenai angka.

14. Blaise Pascal (Prancis 1.623-1.662 M)

Blaise Pascal adalah seorang ahli matematika, fisika, teologi serta penyair. Pascal menjadi sangat tertarik pada matematika, khususnya geometri ketika dia 6 atau 7 tahun. Ketika itu ayahnya menyingkirkan buku matematika karena ia percaya bahwa anak-anak tidak harus belajar bahwa dalam sebuah buku yang sulit. Namun Pascal masih mempelajarinya secara sembunyi-sembunyi. Pada usia 12 tahun tanpa memperoleh bantuan orang lain, ia menemukan bahwa jumlah semua sudut dalam sebuah segitiga selalu 180. Dia menunjukkan kepada ayahnya dan menjelaskan dengan jelas. Ayahnya begitu terpana sampai akhirnya diperbolehkan anaknya terus belajar matematika dengan impunitas. Dalam 19 tahun Pascal telah menemukan mesin hitung yang menggunakan roda gigi. Dalam fisika, ia menemukan prinsip tekanan dalam cairan maka prinsip ini diabadikan dirinya.

15. Seki Takakazu (Japan 1.642-1.708 M)

Pada waktu hidupnya, Jepang menggunakan sistem angka Cina daripada sistem berbelit-belit dari angka Arab untuk mewakili angka. Mereka juga menggunakan alat-alat yang terbuat dari kayu (disebut Sangi) yang pertama kali dikembangkan di China kuno untuk membangun metode pengukuran. Pada saat itu metode yang luas untuk mengukur Seki menemukan luas daerah yang dibatasi oleh kurva kurva atau volume benda ruang yang saat ini disebut “integral“.

16. Isaac Newton (Perancis, 1.642-1.727 M)

Isaac Newton adalah salah satu matematikawan besar serta fisika belajar. Ia menemukan hukum gravitasi dan menyimpulkan teori bahwa gravitasi adalah gaya tarik obyek ke obyek lain. Semakin jauh jarak antara dua benda semakin lemahlah gaya gravitasi antara dua benda. Gerak Bulan mengelilingi bumi dapat dijelaskan dengan hukum gravitasi. Newton juga menemukan hukum gerak yang merupakan dasar dari dinamika. Dia tertarik dengan astronomi dan menemukan jenis teleskop reflektor akhirnya diabadikan dengan namanya.

17. Gottfried Wilhelm Leibniz (Jerman 1.646-1.716 M)

Ayah Gottfried Wilhelm Leibniz adalah seorang profesor di Universitas tetapi meninggal ketika langkah Leibniz pada usia enam. Sejak itu kaum muda belajar sendiri dan Leibniz membantu dengan bimbingan ibunya. Belajar mandiri membuat Leibniz bebas dari cara berpikir tradisional. Ia dan Newton merumuskan gagasan dasar tentang “kalkulus differensial“.

18. Leonhard euler (Swiss 1707-1783 M)

Leonhard Euler telah dianggap sebagai salah satu matematikawan terbesar yang dulu ada di dunia ini. Ia tidak hanya fokus pada bidang matematika tetapi ia juga mempelajari dunia fisika. Pria yang berasal dari swiss ini merupakan orang yang berjasa dalam penemuan teori graf dan juga kalkulus. Disamping itu ia juga telah memperkenalkan banyak sekali notasi serta temonologi matematika modern. Euler juga dikenal dengan karya-karya besarnya diantaranya adalah dinamika fluida, optik, serta beberapa penemuan di bidang astronomi. Masa dewasa euler di habiskan di negeri rusia tepatnya di saint petersburg. Semasa hidupnya ia juga pernah tinggal di berlin dan prusia. Euler di sebut-sebut sebagai salah seorang matematikawan yang paling produktif dalam menghasilkan karya dan menggagas beragam teori.

19. Johan Gauss (Jerman 1.777-1.885 M)

Bila leunhard euler adalah rajanya matematika, maka  carl friedrich gauss adalah orang yang disebut sebagai pangeran dalam bidang matematika. Pada usia 21 tahun gauss telah menyelesaikan sebuah buku mengenai aritmatika berjudul disquisitiones arithmeticae yang isinya sudah diakui oleh seluruh dunia. Gauss memang seorang yang sangat unik dan luar biasa, ia sekali waktu pernah melakukan perhitungan 1 sampai 100 hanya dalam beberapa detik saja. Ia dikirim oleh pemerintah untuk melaksanakan studi di gottingen, sebuah universitas matematika yang sangat diakui kebesarannya. Setelah lulus dari universitas tersebut pada tahun 1798, ia memulai karirnya di bidang matematika dengan memberi banyak kontribusi dalam hal teori bilangan. Sebelum usianya genap 24 tahun, gauss sudah mampu menghasilkan beragam karya dan pengaruh, ia pernah membuktikan teori dasar aljabar, mengemukakan teori fisika mengenai konstanta gravitasi gauss, dan berbagai karya besar lainnya.

20. G. F. Bernhard Riemann (Italia 1826-1866 M)

Riemann adalah seorang dari keluarga miskin yang lahir pada tahun 1826. Meskipun keadaanya berkekurangan ia tidak pernah menyerah dan mampu membuktikan kontribusinya di dalam bidang matematika pada awal abad ke -19. Ada beragam teorema yang ia perkenalkan dan sampai sekarang masih digunakan di dalam pelajaran atau materi-materi perhitungan matematika. Diantaranya adalah riemann integral dan geometri riemann.

21. Alan Turing (Britania Raya 1912-1954)

Bila anda sedang duduk didepan layar komputer saat ini, maka anda harus berterima kasih pada seorang bernama alan turing. Ia merupakan orang yang berperan besar dalam dunia komputer. Alan turing adalah ilmuwan komputer pertama. Semasa hidupnya ia melimpahkan pemikirannya dalam memahami bidang komputasi dan matematika. Tidak heran bila ia dianggap sebagai salah satu pemikir terbesar di abad ke-20.